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Dynamics of soft and semisoft nematic elastomers
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We analyze analytically and numerically the dynamics of how a nematic elastomer—an anisotropic rubber—
responds elastically and orientationally to an imposed strain. Because positional and orientational degrees of
freedom are coupled, the response is not the simple exponential one might expect for a viscous system. Indeed,
as a result of this nonlinear coupling, the different modes decay in two qualitatively different ways: with either
two distinct or with the same exponential laws, depending, respectively, on whether there is or there is not
complete reorientation of the molecular long axes. In addition, at the special values of the strain that form the
boundaries between differerqjuilibrium behaviors, relaxation is much slower, i.e., it follows a power law.
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[. INTRODUCTION ous director rotation(predicted by Bladon, Terentjev, and
Warner[11] and seen by Mitchell and co-workdr2]), the

Elastomers are rubbers: networks of weakly cross-linkedgo-called “stripe domains’[13], and the analog of a Fred-
polymers. The macroscopic shape of an elastomer |arge|9riks transition[14]. The last two effects have been inter-
mirrors that of its constituent molecules. Extending a conpreted[15-17 in terms of the “neoclassical” molecular
ventional elastomer deforms the network chains away froniheory of nematic elastomef48], which is able to handle
their natural, most disordere@pherical shape: the entropy nonlinearities and discontinuities.
drops and the free energy rises. The free-energy cost of a Here we wish to examine the dynamics of relaxation of a
shape change is what makes an elastomer an elastic soﬂﬂ@l’ﬂ&tiC elastomer which has been stretched at right angles to
even though at the molecular level it has the mob”ity’ f|uid_the director. This will be Complicated, since on distortion
ity, and disorder of a liquid1,2]. both positional and orientational modes respond. The softest

All this is modified for nematic elastomers, where below atrajectory involves the coupled viscoelastic motion of shear
certain temperature chain Shapes are not on average sphe’i[’]d director modes. If the material is truIy soft, i.e., if it
cal, but prolate or oblate spheroidal. First postulated by déupports deformations that cost no free energy, there should
Genned3,4], these materials were subsequently synthesize§€ & vanishing driving force for this motion and the response
by Finkelmann’s and Mitchell’'s groups, as well as by a num_Wi” be slow. Both ideal and real nematic elastomers have
ber of othergsee, e.g.[5] and references thergirThey are ~ conventional and softor semisoft regimes, depending on
unusual in that they have, coupled to their elasticity deforthe magnitude of the imposed extensional strain. We have
mations, an internal orientational degree of freedom, nameljound that the dynamics should be qualitatively different in
their nematic order: the molecular long axes align preferenthe two elastically qualitatively different regimes. In one
tially along one particular direction, termed the nematic di-case the coupled modes should relax with different rates de-
rector. Now, a distorted distribution of chain shapes is nofPending on the underlying positional and orientational mo-
the 0n|y possib|e response to an extension or a shear: thhj“ties. Remarkably, in the other case the modes should mix
distribution can be rotated without distortion, hence at conand relax with a single rate. This unusual result is shown to
stant entropy, in such a way that the macroscopic samplee a consequence of the anomalous elastic behavior possible
shape is still mirrored by that of the constituent moleculedn nematic elastomers. A closely related system has yielded
(see Fig. 1 This being the case, the free energy does not ris€Xperimental data: Meyeat al. [14] instead rotate the direc-
and the shape change is achieved as if the elastomer werd@{ by applying an electric field, and on removing the field
liquid. One requires that the nematic director rotate as the

deformation proceeds. This shape-nematic coupling is what no -
generates the remarkable soft elasticity, first predicted on n
phenomenological grounds by Golubovic and Lubengiy - e @
within continuum theory. x
The elasticity of these solid liquid crystals has been much
studied experimentally and theoretically. Besides macro- y :
scopic sample changes on ordering nematicglly], they A) B) ©)
exhibit exotic properties such as memory effd&k stress-
induced molecular switchingl0], strain-induced discontinu- FIG. 1. Experimental geometry considered:tAt0, the nematic

directorn® is along thex axis. Application of a strain alongrotates

the chain shape distribution so that s~ the director points

*Present address: IRC in Polymer Science and Technology, Dealongz (regimeC) or some intermediate angleegimeB). In ad-
partment of Physics, University of Leeds, Leeds LS2 9JT, U.K. dition to extension, the shead=\,, is allowed.
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there is an overdamped viscous relaxation of the director. Ahem, and therefore the lower the free energy. This is also

subsequent studjl7] has revealed that this distortion in- true if sufficiently long, nematic chains asmisotropicran-

volves other coupled mechanical modes. By contrast, the amdom walks; we then have, instead of K@),

isotropic gels of Hikmet and Boot49] also respond to ap-

plied electric fields but, unlike Meyest al's [14] or Clarke

and Terentjev's [20] elastomers, they appear to be

microphase-separated structures, since they scatter light in

their field-on state and have much shortby a factor of ~ The chain shape distribution is Gaussian, characterized by an

1000 switching times, typical of fredéun-cross-linkefilig-  anisotropic(second-momeijtshape spheroid® before and

uid crystals. / after deformation./ is essentially the tensor of step
This paper is organized as follows. In Sec. Il we briefly lengths describing the polymer random walk statistics. It is

review the neoclassical theory (Gaussianelastomer elas- uniaxial, aligned with the directan:

ticity [1,2] and write down the corresponding free-energy

P H{R)~ex;{—iRT/‘lR) (4)
ne 21 = '

density of a nematic elastomer. We then derive the equations /=7 1+ (/=71 )nn, (5)
of motion that are solved analytically, in the long-time limit, - -
in Sec. Ill, and numerically, over the whole time range, inwherel is the unit tensornn is a dyad, and’, and/ are

Sec. IV. Finally, in Sec. V we summarize our conclusions.the step lengths perpendicular and paralleb toespectively.
Details of the asymptotic analysis of the equations of motiorTypically, if we measurex directly from the relaxed state

are given in the Appendix. before deformatiortand not from some state more distant in
the thermomechanical histonthen/ and/° differ only in
IIl. THE FREE ENERGY AND EQUATIONS OF MOTION the directionsn and n, and not in the magnitude of their

elements. The free-energy dens{fyjED) for nematic elas-
Stomers then follows from a quenched average @ |g{(R)
with the statistical weight at network formatioR?,(R°)
[18]:

The first, linear, continuum picture of nematic elastomer
is due to de Gennd21], who wrote down théphenomeno-
logical) free-energy density:

1
frotZEDl[(Q_w)xn]2+D2n'2'[(ﬂ_w)><n]a 1) len kBTTr[/°~)\T~/_1~)\] (6)
2" AL A

where() andw are the rotations of the elastic matrix and of
the directorn, respectively, with respect to some fixed axis,
ande is the infinitesimal deformation tensor. The two energy
scalesD,; and D, penalize, respectively, director rotations
with respect to the polymer matrix, and shear deformation . , = , , .
of the pglymer matrg( r)élative to the director. Still, because Extrgctmg factors o, from éo a-nd/fromébv.vhlch then
elastomers are essentially liquidiike, they are capable of hugg®Ncel in Eq.(6), we can characteriz€ and/~ instead by
extensions, and it is in the nonlinear limit that the most in-f =7/ . Then/ can be rewritten as

teresting phenomena are observed. One then requires the

nematic equivalent of the molecular theory of rubber elastic- /=1+(r=1)nn. @)

ity to derive the free energy up to distortions of several hun- o .
dred percent. r is a measure of the chain anisotropy and can be large. One

can show{18] that the spontaneous extension along the di-
rector,\,, of an unconstrained sample on entering the nem-
atic phase from the isotropic phase)ig=r*°. This can be
The neoclassical theory of ordinary rubber elasticity treat&as much as 50%.e., A ,,=1.5), yieldingr ~3.4. Note that

whereng is the number of elastically active polymer strands
per unit volume in the network antr denotes the trace of a
matrix. The deformation transforms an initial poinR® into

& final pointR, that is,R=\R0.

A. The free energy

a polymer chain as a Gaussian random wWalg|; the distri-  jsotropic chains have= 1, whereupon Eq6) reduces to the
bution of end-to-end distanc&sis thus classical expression for rubber elasticity.
3R2 As mentioned in the Introduction, there exists a con-
=3 I(R)~exp( _ _) ) tinuum of soft deformations that leave the FED unchanged at
0 21L)’ its relaxed valuef=2nkgT. These are of the general form

A=/Y2.U. (/%2 whereU is an arbitrary rotation matrix

with | the step length and the arc length between cross [2o17|n this paper we shallTestrict ourselves to strains given
links, assumed sufficiently longr the corresponding num-

b
ber of monomer units large The free energy of two con- y
nected cross linkK apart is A\yy O O
3R? A= 0 Ay Of, 8
Fiso R)=—KgT In Piso R) = kBTﬂa ©) - S 0 \

wherekg is Boltzmann’s constant aridlis the temperature. Where(see Fig. 1the sample is extended by a factom the
Fio(R) is of purely entropy origin: the closer two points are, direction perpendicular to the original directat (=x), al-
the more configurations are available to the chain connectinpwing transverse relaxations,, and A, =1/(\,,\) (since
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deformations are at constant volume in such soft matgrials Equally, normal(isotropig elastomers have a X trans-
In addition, we allow a shear relaxatidi \ ,,, which helps  verse relaxation, seen here in regivdeandC. By contrast,
accommodate the rotating molecular spheroids and ensur@s the soft or semisoft regimB we have IX and constant
that such deformations are soft up to a threshold\,,  contraction/dilation in thex andy directions, respectively.
where director rotation is complete. The softness of responsRegimeA has been studied by one of (4], in the special
and the director rotation on extension have been studied byase where only shears are allowed., A=\,,=1) and the
Kundler and Finkelmanri13] and by Talrozeet al. [23].  girector returns te9=0 on switching off a disaligning elec-
They also see stripes and more complex patterns, presumably; field.
because of the difficulties in accommodatifigt the clamps

where the sample is gripped. We ignore the larger-scale
problems of stripes and inhomogeneities in the clamp region

and concentrate instead on uniform deformatinrend uni- The relaxation of this system, governed as it is by non-
form director rotationsd (the latter defined as the angle be- conserved variables, is most simply modeled in a continuum

tween the director and theaxis). Inserting Eq(7) for ~ and  fashion with mobilitiesI", (a=6,\,«,6) giving the rate of
Eq. (8) for \ into Eq. (6), we obtain the FED = response of each variable to the corresponding generalized

force deriving from the FED:

B. The equations of motion

1 1
- 2442 2_(r_ i de of
f 2nSkBT N +)\XX+(7\XX7\)2H5 (r—=1)\0sin26 a:_rﬂ%
)\2
1 22 o 2]
(r 1)( Nt 87 simd), ©) =—F4A>\2sin 26— 2N,,(r — 1)c0S 20
to which must be added a terfigs=3nckg TANZ Sir? 6, the A2
so-called “semisoft” deviation from completely soft elastic- — ( =N\ + —|(r=1)sin26|, (13
ity. Such nonideality stems from the elastomer’s thermome-
chanical history, for instance the order parameter imposed dn of
during cross-linking to achieve a macroscopic monodomain. XX -Iy,—
It gives a small threshold\;=[(1—1/)/(1— 1k —A)]*3 dt INxx
>1 above which the material responds with a low stress 2
until the director rotation is complete &= \/F)\l; there are = —F)\[Z)\XX— W+2hxx(r —1)sirte
thus three regimes of response. Straightforwardly, minimiz- XX
ing the semisoft FEDf + f4, over §, A\, and @ yields (see
[15] for detailg —8(r—1)sin 20|, (14
_ - _ 1 _
Al N<Np, 0=0, Ay=A,=—=, 6=0; (10 as_ . df
VN at- Tegs
o r A2 =—T28r—28(r—1)SirP0— N (r —1)sin 26],

where we have absorbed a factorjofkg T into the defini-
tions ofI',, and for simplicity have writted’y asI'y. An

1
\/)\—1 analogous problem has been addressed by us, namely where
extensions and contractions are suppresseg Ny,=\y
_ r—=1 )\ _ =1) but shearss and director rotation are allowed under an
T )\T,zsin 20, (11 electric field applied perpendicular to the initial direction of
1 alignment{17,24). Its statics and dynamics have been inves-
tigated experimentally by Meyeat al. [14].
— The evolution Eqs(13)—(15) describe the approach to the
6=0, equilibrium state, given by equatio$0)—(12), upon impo-
(12) sition of an extensioir. We shall look in detail into regimes
B andC. There is no internal rotation of the elastomer under
where an overbar over a variable denotes its equilibriunfn extension\ in regime A except for the transverse,
value. RegimeA corresponds to no rotation of the director; volume-preserving relaxations to\IV. These must occur at
regimeB, to partial rotation towards the direction of exten- a rate governed by the speed of longitudinal sound. In re-
sion; and regimeC, to complete reorientation. The behavior gimesB andC we shall consider the initial state of the sys-
is qualitatively the same foA=0 (A;=1) andA>0 (A;  tem to be not onlyA (>N\;) but also\,,=\,,= 1/Y\, the
>1); for instance, the singular dependencedX) as seen latter two variables attaining thimionequilibrium state in a
by Kundler and Finkelmanhl3] and collapsed to Eq11l) time derived from propagating elastic waves across the
for a large number of elastomers by Finkelmasiral.[16].  sample, a time that is much shorter than the smallgst,

. 1 . r1/4

C: A>Ny, =%, Ap=—r=, Ayy=—7,
2 XX I,]_/4\/{ yy \/X

N[
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which derives from the subsequent internal relaxation. Equa- (a) (b) (©
tions (13)—(15) are coupled, so that the evolution of each
variable is driven by the deviations of all variables from
equilibrium. This can be understood in the context of our
earlier discussion of why a shedris necessary to accom- 10’
modate shape change due to director rotation. Furthermore, it2
opens up the possibility of complex behavior, depending on 5 10*
the ratios of the dynamical ratds, . ]

In the next section we linearize the above equations of 1°
motion forA (t) and é(t), in order to extract their asymptotic

Abrm,

i

behavior at long times and thereby clarify the qualitative 4~ | )

3 ._V_._.._,....A,_.__.4.‘._../

. i . A L
0 100 200 300 400 G 10 20 30 40 50 O 1000 2000 3000

aspects of the approach to equilibrium. It turns out thgt 1 : 1
becomes decoupled from the other two variables at linear

order in regimeC, leading to unexpected results. These are FIG. 2. A¢ (solid ling), A\, (dashed ling and|A 6| (dotted
then confirmed by numerical solutions, presented in Sec. IViine) for a nematic elastomer characterizedrby1.4, A=0.1, and
We shall presume similar relaxation mechanisms for the po@ I'y/I'y=1.0;(b) I, /'y =10.0; and(c) I',/I", =0.1. The exten-
sitional modess and A, and accordingly sef s=T, in sion isA=1.2 (regimeB). At long times, all three variables decay
what follows. Cases will be considered where the nemati€xponentially with the same time constasee the text and Table |
degree of freedoms(t), is comparably fast, faster, or slower for details.

than the positional degrees of freedom.

We shall see that the coupled, dissipative equations Oflastome)r, the dynamics in the variablé disappears and

; . : «x and 8 decouple from each other, as expected in a con-
motion generally yield exponential decays of the observ-ventional solid
ables. Yet it is known that the long-time response of both '
isotropic[25] and nematid26] elastomers is very slow in-
deed. These are very subtle effects of chain connectivity,
stress localization, and, in nematic elastomers, random fields The rate matriXM is 3X 3 and has three real eigenvalues,
causing competing orderings. Polydomain elastomers havey,,u,,us, With corresponding eigenvectoss ,v,,vs, de-
additionally, pinning, activation, and competition and com-caying as pure exponentials;(t)=v;(0)e”*' (i=1,2,3).
patibility issues. Work by Clarke and Terentjg26], both A 4(t), AN (t), andA §(t) can be expressed as linear com-
experimental and theoretical, shows that their response toinations of thev;(t) and hence will be the sum of exponen-
imposed strains is highly nontrivial and with a very slow tial decays. At long times, whatever the admixture of
dynamics. Our investigation is then clearly only applicable tov, ,v,,v; in a given variable is, the behavior will be domi-
times early compared with the very long time scales associnated by the slowest mode, that is, the mode with the small-
ated with these other processes. Setting aside this long-timsstu; , us, say. And indeed the variables in Figs. 2 and 3 all
relaxation, there is nevertheless experimentally rich behaviofelax with thesamerate constant in the long-time region.
observed in the earlier, principal decay of strains. We haverhe smallest of the calculated eigenvaluedvbfor the two
mentioned the dynamics induced by electric field coupling toy s in regime B agrees exactly with the rate obtained by
the director[14]. There are also the dynamical mechanicalfitting the numerical curvetsee Tables | and Jl The preas-
measurements of Clarke and Terentj@p], which reveal ymptotic knee seen in Figs. 2 and 3 is a consequence of the
relaxation in the fraction-of-second regime, a motion apparpresence of faster-decaying modes. In the Appendix we dem-

A. RegimeB

ently of the type we examine here. onstrate that the matrix of decay ratdsbecomes singular at
the beginning and end of regini® that is, at\=X; and\
IIl. THE APPROACH TO EQUILIBRIUM: =M. At these particular elongations parts of the problem
ASYMPTOTIC ANALYSIS become purely nonlinear and the dynamics power law rather

than exponential.
In the long-time limit, as deviations from the final equi-

librium values become small, Eq&l3)—(15) can be linear- (@) (b) ()
ized to give .
10
Y A6 o
oy A)\xx =—M- A)\xx ’ (16) g.
dt M S
AS AS 31

where A 6= 6— 6, A)\XX=)\XX—YXX, AS=5— 65 are the de-
viations of the relaxing variables away from their final equi-
librium values.M is given in terms off, \,,, §; it differs
qualitatively in form depending on whethgris in regimeB

or C. Explicit expressions for the elements M are pre- FIG. 3. Same as Fig. 2 but far=1.3 (regimeB). See the text
sented in the Appendix. One sees that ferl (isotropic  and Table Il for details.

20 0 400 800 1200
t




PRE 60 DYNAMICS OF SOFT AND SEMISOFT NEMATIC ELASTOMERS 607

TABLE 1. Elastomer relaxation to regim&, x=1.2, forr
=1.4,A=0.1,T,=TI's=1.0. us is the smallest eigenvalue o (@) (b) )
given by Egs.(A1)—(A9) of the Appendix. The decay rates are
found by fitting the curve foA 4(t) in Fig. 2 to an exponential. The
numbers in parentheses are the estimated uncertainties in the last
decimal places; note the excellent agreement between analytical
predictions and numerical results.

A/, Adxx, 1AS]

r, M Decay rate
1.0 0.092 8004 0.092 6%)
10.0 0.695 105 0.691(8)
0.1 0.009 524 23 0.009 51@&)
B. RegimeC FIG. 4. A¢ (solid line), A\, (dashed ling and|A§| (dotted

. line) for a nematic elastomer characterizedrbyl1.4, A=0.1, and

When the final state is of total reorientatiahs 7/2, and  (a) I'y/T",=1.0; (b) I',/T',=10.0; and(c) ', /T, =0.1. The exten-
zero shearg=0, the linearization of the equations of motion Sion isA=1.5 (regimeC). ¢ starts from zero and only when itis
is more subtle since several elements\bfvanish: see the appreciable are the other variables seen to react, as there must exist
Appendix. The equation foA\ ., decouples from those for enough s_hear to accommodake?, see Fig. 1. At long tlmes,_ all
A6 and A5, which remain coupled to each other. One Canthree variables decay exponentially but the rate constaAiQf is
immediateli see why at lond timesg andA 8 must h.ave the twice those of the other two, which are eq(sge the text and Table

y .y . 9 . Il for details).

same decay rate—it will be the smaller of the two eigenval-
ues emerging when the>X22 problem of A#,A8) (de-

i . e where B; is an arbitrary constant. Now it is clear from Eq.
scribed by matrixM,.4, see the appendixs broken down ; y 9

(A11) of the Appendix thajus<4I',r, for most choices of

into normal modes. _ . T'yandT's. This means that\\,,(t) is dominated by the
The equation foiA,, being decoupled, has a dynamics yonhomogeneous term, that is, by the effectAdi(t) and
of its own and is, superficially, AS(t). It follows that the rate of decay af\,,(t) is twice
dan,, that of A 6(t) or A(t):
gt - ShrAh @7 ANy (1)~ 24t~ (A O(1))?~ (A 8(1))2. (20

However, there is nca priori reason for discarding the Because the dynamics is singulanat \; and\ =\,, there

higher-order terms inX )%, A9AS, and A5)? in Eq.(17),  are always regions ok where some eigenvalues become

which are, at linear order, independentdof,, . Although of  very small and the time scales in E49) are well separated,

second order, they may or may not be smaller than the othétence where E¢(20) is valid.

driving term,A\,, . Retaining them, one obtains instead The remarkable qualitative change between regifles
andC is borne out by the numerical results of Sec. IV. Once

dAN 1 2 more, the faster-decaying mode manifests itself as the knee
= =8I\ rAN+9(t), (18) IV. NUMERICAL SOLUTIONS
whereg(t) is a known function, ag\ 6(t),A 5(t) are deter- We adopt a typical value of the anisotropy 1.4 [23]

mined separately as solutions of the decouplet?2prob- and a moderate semisoftness-0.1[17]. For these choices
lem. At long times both must decay exponentially with thethe threshold for deformations is;~1.154, and that for
lowest eigenvalugts of M4, determining the rate as dis- completion of the(semjsoft regime is\,~1.366. In this
cussed above. Thug(t)~Bexp(—2ud) and Eq.(18) is a  section, time is given in units df, =I"s. NAG library rou-
simple nonhomogeneous ordinary differential equation withtine Do2BDF was used to perform the numerical integration
solution (Runge-Kutta-Merson methad
efZ,U-st . .

AN () =B s ’ (19) A. Relaxation to regimeB
8\ —2us In Fig. 2 we show the relaxation in response to an im-
posed deformatioh =1.2. Since the system starts in a meta-
stable staté¢setting#= =0 in Egs.(13)—(15) will confirm
that there is initially no motioh a small misalignment of

TABLE Il. Same as Table I, but fox =1.3, using Fig. 3.

Lo Hs Decay rate 6 (10°°—10%is enough is required to start off. To this
1.0 0.128 968 0.129 06) extent the origin in time is arbitrary and we do not display
10.0 1.018 54 1.019(2) the initial decay.

0.1 0.013 1045 0.013 108% Irrespective of the relative dynamical ratds,:I"): T,

the early time behavior is identical, withd andA § starting
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TABLE lll. Elastomer relaxation to regim€, A\=1.5, forr
=1.4,A=0.1,I',=T,=1.0. us is the smallest eigenvalue M 4

PRE 60

[12], the statics of which is successfully described by the
equilibrium theory[11,15,18. Other more recent dynamical

given by Eq.(A10) in the Appendix. The decay rates are found by mechanical work by Clarke and Terentjg20] shows that
fiting the curve forA 6(t) in Fig. 4 to an exponential. The numbers the apparent modulus varies significantly with frequetiny

in parentheses are the estimated uncertainties in the last decime range 0.2—20 Hzf the imposed shears couple to the
places. Once more, the agreement between analytical predictiorbqrector’ that is, where internal viscoelastic processes be-

and numerical results is remarkable.

ry Ms Decay rate
1.0 0.186 161 0.186 166

10.0 0.812 649 0.812 669
0.1 0.020 2819 0.020 301B

come involved.
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first and more gradually thafsh,, . At longer times the de-
cays are very accurately single exponentsde Table )|
with exactly the same time scale for all three variables, as
follows from the analysis of the preceding section. The same
observations can be made of Fig. 3, whire 1.3 (see also
Table Il). A little more structure is nonetheless evident in
4(t), even though the system is overdamped: the shear does
not approach its equilibrium value monotonically, and thus
A S changes sign at some intermediate tirfiEhe cusp in

Fig. 3 is a consequence of plotting §|.) This results from

the fact that the components of the combination of distor-
tions coupled to, and hence driving(t), themselves decay

at different rates. Moreover, it is apparent particularly in the
I'y=10 case that there is a knee in going from the initial
regime to the late-time region with its common slope.

B. Relaxation to regimeC

A strain of A\=1.5 is now imposed. The response of the
various modes is outwardly rather complgsee Fig. 4 A
starts at zero, since in regim@ both the initial and final
shear vanish. The shear seems to take off more rapidly than
A6 or A\, but this is illusory as it starts from zero and
small changes are simply more visible. There is again a knee
in A9 andAX,,. The final decay is purely exponential with
the rate ofA\,, exactly twice those oA & and A 6, which
are equal(see Table Ill. These remarks hold for all ratios
I'y:T'\ :T's. Thus as revealed analytically in Sec. Ill, there is
both complexity and universality in the response.

V. CONCLUSIONS

We have examined the response of a highly unusual elas-
tic material to step extensions. The coupling between me-
chanical and internglorientational modes gives rise to dif-
ferent dynamics depending on whether the nematic elastomer
is extended to be in thésemjsoft regime or in the hard

APPENDIX

The matrix of driving terms in the linearized equations of
motion (16) is

[N2+(8°—N2)r]cos 26

1
M11=2F0[—(1—F

+2(r — 1)\ Sin 20+ AN2 cosZF}, (A1)

M 1= 2T [ — (r — 1) 5¢0S 20+ X (1 — 1)sin 26]
(A2)

M 13= — 2T [ N xi(r — 1)cOs 26+ &(r — 1)sin 267,
(A3)

M,1=21,[ = (r — 1) 5¢0S 20+ N y(r — 1)sin 267,
(A4)
Mo,=2T,| 1+ 3 +(r—1)sirf @ (A5)

= r—n r—1)si s
22 A Az)\ix

M= —T,(r—1)sin 26, (A6)

Mg;= — 2T 5 N yi(r — 1)cOs 26+ S(r — 1)sin 26],
(A7)
Ma,=—T 5(r —1)sin 26, (A8)
Mas=20 o1 —(r—1)sir? 6]. (A9)

region beyond, in which director reorientation is complete Although not symmetric unless dll, are equal, it must on

The most striking prediction is that in the latter regime thephysical grounds be a diagonalizable matrix with real eigen-

rate of transverse mechanical relaxation should be twice thealues.

rate of director reorientation.

We should stress that our analysis is for the not-too-late
stages of the behavior of nematic monodomains, so that the
subtle long-time effects found even in isotropic elastomers

do not prevail. However, the dynamics of reorientation of M 4=
monodomains is a uniform process already observed by™—

Meyer et al. [14]. This paper addresses the dynamical as-
pects of the related systems of Finkelm4h8] and Mitchell

In regimeC, several elements d¥l vanish, yielding

A1 ,| 2T4(r—1)
ZF(, T—W)(r—l)—A)\ W
2T s(r—1) ’
N 2Ts
(A10)



PRE 60 DYNAMICS OF SOFT AND SEMISOFT NEMATIC ELASTOMERS 609

the eigenvalues of which are It is noteworthy thatM becomes singular fox=X; and X

=\, andM,eq4for A=X,, i.e., at the boundaries between the
different regimes. That is, at these points at least one eigen-
value vanishes and we have an intrinsically nonlinear prob-
lem, losing one of the exponentials to a power law. Then in
the vicinity of A, andX , there is clearly a slowest mode and

p12= (D) I =T [ (r = D)Vr+23(1=r+An)]

+ (A D[ (r=1)r¥2+2\3(1—r+An)]

TN =T (r =1 Jr+23(1=r+Ar)}2)¥2]. the remarks made in Sec. Il about all variables either decay-
s ol )\/— ( " ing together or one twice as fast as the other two are seen to
(A11) apply.
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