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Dynamics of soft and semisoft nematic elastomers

P. I. C. Teixeira* and M. Warner
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 22 January 1999!

We analyze analytically and numerically the dynamics of how a nematic elastomer—an anisotropic rubber—
responds elastically and orientationally to an imposed strain. Because positional and orientational degrees of
freedom are coupled, the response is not the simple exponential one might expect for a viscous system. Indeed,
as a result of this nonlinear coupling, the different modes decay in two qualitatively different ways: with either
two distinct or with the same exponential laws, depending, respectively, on whether there is or there is not
complete reorientation of the molecular long axes. In addition, at the special values of the strain that form the
boundaries between differentequilibrium behaviors, relaxation is much slower, i.e., it follows a power law.
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I. INTRODUCTION

Elastomers are rubbers: networks of weakly cross-lin
polymers. The macroscopic shape of an elastomer lar
mirrors that of its constituent molecules. Extending a co
ventional elastomer deforms the network chains away fr
their natural, most disordered~spherical! shape: the entropy
drops and the free energy rises. The free-energy cost
shape change is what makes an elastomer an elastic s
even though at the molecular level it has the mobility, flu
ity, and disorder of a liquid@1,2#.

All this is modified for nematic elastomers, where below
certain temperature chain shapes are not on average sp
cal, but prolate or oblate spheroidal. First postulated by
Gennes@3,4#, these materials were subsequently synthesi
by Finkelmann’s and Mitchell’s groups, as well as by a nu
ber of others~see, e.g.,@5# and references therein!. They are
unusual in that they have, coupled to their elasticity def
mations, an internal orientational degree of freedom, nam
their nematic order: the molecular long axes align prefer
tially along one particular direction, termed the nematic
rector. Now, a distorted distribution of chain shapes is
the only possible response to an extension or a shear:
distribution can be rotated without distortion, hence at c
stant entropy, in such a way that the macroscopic sam
shape is still mirrored by that of the constituent molecu
~see Fig. 1!. This being the case, the free energy does not
and the shape change is achieved as if the elastomer w
liquid. One requires that the nematic director rotate as
deformation proceeds. This shape-nematic coupling is w
generates the remarkable soft elasticity, first predicted
phenomenological grounds by Golubovic and Lubensky@6#
within continuum theory.

The elasticity of these solid liquid crystals has been mu
studied experimentally and theoretically. Besides mac
scopic sample changes on ordering nematically@7,8#, they
exhibit exotic properties such as memory effects@9#, stress-
induced molecular switching@10#, strain-induced discontinu

*Present address: IRC in Polymer Science and Technology,
partment of Physics, University of Leeds, Leeds LS2 9JT, U.K.
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ous director rotation~predicted by Bladon, Terentjev, an
Warner@11# and seen by Mitchell and co-workers@12#!, the
so-called ‘‘stripe domains’’@13#, and the analog of a Fred
eriks transition@14#. The last two effects have been inte
preted @15–17# in terms of the ‘‘neoclassical’’ molecula
theory of nematic elastomers@18#, which is able to handle
nonlinearities and discontinuities.

Here we wish to examine the dynamics of relaxation o
nematic elastomer which has been stretched at right angle
the director. This will be complicated, since on distortio
both positional and orientational modes respond. The sof
trajectory involves the coupled viscoelastic motion of sh
and director modes. If the material is truly soft, i.e., if
supports deformations that cost no free energy, there sh
be a vanishing driving force for this motion and the respon
will be slow. Both ideal and real nematic elastomers ha
conventional and soft~or semisoft! regimes, depending on
the magnitude of the imposed extensional strain. We h
found that the dynamics should be qualitatively different
the two elastically qualitatively different regimes. In on
case the coupled modes should relax with different rates
pending on the underlying positional and orientational m
bilities. Remarkably, in the other case the modes should
and relax with a single rate. This unusual result is shown
be a consequence of the anomalous elastic behavior pos
in nematic elastomers. A closely related system has yiel
experimental data: Meyeret al. @14# instead rotate the direc
tor by applying an electric field, and on removing the fie

e-

FIG. 1. Experimental geometry considered: Att50, the nematic
directorn0 is along thex axis. Application of a strain alongz rotates
the chain shape distribution so that ast→` the director points
alongz ~regimeC! or some intermediate angle~regimeB!. In ad-
dition to extension, the sheard5lzx is allowed.
603 ©1999 The American Physical Society
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604 PRE 60P. I. C. TEIXEIRA AND M. WARNER
there is an overdamped viscous relaxation of the directo
subsequent study@17# has revealed that this distortion in
volves other coupled mechanical modes. By contrast, the
isotropic gels of Hikmet and Boots@19# also respond to ap
plied electric fields but, unlike Meyeret al.’s @14# or Clarke
and Terentjev’s @20# elastomers, they appear to b
microphase-separated structures, since they scatter lig
their field-on state and have much shorter~by a factor of
1000! switching times, typical of free~un-cross-linked! liq-
uid crystals.

This paper is organized as follows. In Sec. II we brie
review the neoclassical theory of~Gaussian! elastomer elas-
ticity @1,2# and write down the corresponding free-ener
density of a nematic elastomer. We then derive the equat
of motion that are solved analytically, in the long-time lim
in Sec. III, and numerically, over the whole time range,
Sec. IV. Finally, in Sec. V we summarize our conclusion
Details of the asymptotic analysis of the equations of mot
are given in the Appendix.

II. THE FREE ENERGY AND EQUATIONS OF MOTION

The first, linear, continuum picture of nematic elastom
is due to de Gennes@21#, who wrote down the~phenomeno-
logical! free-energy density:

f rot5
1

2
D1@~V2v!3n#21D2n•e•@~V2v!3n#, ~1!

whereV andv are the rotations of the elastic matrix and
the directorn, respectively, with respect to some fixed ax
ande is the infinitesimal deformation tensor. The two ener
scalesD1 and D2 penalize, respectively, director rotation
with respect to the polymer matrix, and shear deformati
of the polymer matrix relative to the director. Still, becau
elastomers are essentially liquidlike, they are capable of h
extensions, and it is in the nonlinear limit that the most
teresting phenomena are observed. One then requires
nematic equivalent of the molecular theory of rubber elas
ity to derive the free energy up to distortions of several h
dred percent.

A. The free energy

The neoclassical theory of ordinary rubber elasticity tre
a polymer chain as a Gaussian random walk@1,2#; the distri-
bution of end-to-end distancesR is thus

Pisot~R!;expS 2
3R2

2lLD , ~2!

with l the step length andL the arc length between cros
links, assumed sufficiently long~or the corresponding num
ber of monomer units large!. The free energy of two con
nected cross linksR apart is

F isot~R!52kBT ln Pisot~R!5kBT
3R2

2lL , ~3!

wherekB is Boltzmann’s constant andT is the temperature
F isot(R) is of purely entropy origin: the closer two points ar
the more configurations are available to the chain connec
A
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them, and therefore the lower the free energy. This is a
true if sufficiently long, nematic chains areanisotropicran-
dom walks; we then have, instead of Eq.~2!,

Pnem~R!;expS 2
3

2lLRTl 21RD . ~4!

The chain shape distribution is Gaussian, characterized b
anisotropic~second-moment! shape spheroidl 0 before and
l after deformation.l is essentially the tensor of ste
lengths describing the polymer random walk statistics. It
uniaxial, aligned with the directorn:

l 5l 'I 1~ l i2l '!nn, ~5!

whereI is the unit tensor,nn is a dyad, andl ' and l i are
the step lengths perpendicular and parallel ton, respectively.
Typically, if we measurel directly from the relaxed state
before deformation~and not from some state more distant
the thermomechanical history!, thenl and l 0 differ only in
the directionsn and n0, and not in the magnitude of thei
elements. The free-energy density~FED! for nematic elas-
tomers then follows from a quenched average of lnPnem(R)
with the statistical weight at network formationPnem

0 (R0)
@18#:

f 5
1

2
nskBTTr@ l 0

•lT
•l 21

•l#, ~6!

wherens is the number of elastically active polymer stran
per unit volume in the network andTr denotes the trace of a
matrix. The deformationl transforms an initial pointR0 into
a final pointR, that is,R5lR0.

Extracting factors ofl ' from l 0 and froml , which then
cancel in Eq.~6!, we can characterizel and l 0 instead by
r 5l i /l ' . Thenl can be rewritten as

l 5I 1~r 21!nn. ~7!

r is a measure of the chain anisotropy and can be large.
can show@18# that the spontaneous extension along the
rector,lm , of an unconstrained sample on entering the ne
atic phase from the isotropic phase, islm5r 1/3. This can be
as much as 50%~i.e., lm51.5), yielding r;3.4. Note that
isotropic chains haver 51, whereupon Eq.~6! reduces to the
classical expression for rubber elasticity.

As mentioned in the Introduction, there exists a co
tinuum of soft deformations that leave the FED unchange
its relaxed value,f 5 3

2 nskBT. These are of the general form
l5l 1/2

•U•(l 0)21/2, whereU is an arbitrary rotation matrix
@22#. In this paper we shall restrict ourselves to strains giv
by

l5S lxx 0 0

0 lyy 0

d 0 l
D , ~8!

where~see Fig. 1! the sample is extended by a factorl in the
direction perpendicular to the original directorn0 ([ x̂), al-
lowing transverse relaxationslxx and lyy51/(lxxl) ~since
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PRE 60 605DYNAMICS OF SOFT AND SEMISOFT NEMATIC ELASTOMERS
deformations are at constant volume in such soft materia!.
In addition, we allow a shear relaxationd5lzx , which helps
accommodate the rotating molecular spheroids and ens
that such deformations are soft up to a thresholdl5l2,
where director rotation is complete. The softness of respo
and the director rotation on extension have been studied
Kundler and Finkelmann@13# and by Talrozeet al. @23#.
They also see stripes and more complex patterns, presum
because of the difficulties in accommodatingd at the clamps
where the sample is gripped. We ignore the larger-sc
problems of stripes and inhomogeneities in the clamp reg
and concentrate instead on uniform deformationsl and uni-
form director rotationsu ~the latter defined as the angle b
tween the director and thex axis!. Inserting Eq.~7! for l and
Eq. ~8! for l into Eq. ~6!, we obtain the FED

f 5
1

2
nskBTFl21lxx

2 1
1

~lxxl!2 1rd22~r 21!lxxd sin 2u

2~r 21!S l2

r
2lxx

2 1d2D sin2uG , ~9!

to which must be added a termf ss5
1
2 nskBTAl2 sin2 u, the

so-called ‘‘semisoft’’ deviation from completely soft elasti
ity. Such nonideality stems from the elastomer’s thermom
chanical history, for instance the order parameter impo
during cross-linking to achieve a macroscopic monodom
It gives a small thresholdl15@(121/r )/(121/r 2A)#1/3

.1 above which the material responds with a low str
until the director rotation is complete atl25Arl1; there are
thus three regimes of response. Straightforwardly, minim
ing the semisoft FED,f 1 f ss, overd, lxx andu yields ~see
@15# for details!

A: l,l1 , ū50, l̄xx5l̄yy5
1

Al
, d̄50; ~10!

B: l1,l,l2 , sin2 ū5
r

r 21 S 12
l1

2

l2D ,

l̄xx5
Al1

l
, l̄yy5

1

Al1

,

d̄5
r 21

2r

l

l1
3/2

sin 2ū; ~11!

C: l.l2 , ū5
p

2
, l̄xx5

1

r 1/4Al
, l̄yy5

r 1/4

Al
, d̄50,

~12!

where an overbar over a variable denotes its equilibri
value. RegimeA corresponds to no rotation of the directo
regimeB, to partial rotation towards the direction of exte
sion; and regimeC, to complete reorientation. The behavi
is qualitatively the same forA50 (l151) andA.0 (l1
.1); for instance, the singular dependence ofu(l) as seen
by Kundler and Finkelmann@13# and collapsed to Eq.~11!
for a large number of elastomers by Finkelmannet al. @16#.
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Equally, normal~isotropic! elastomers have a 1/Al trans-
verse relaxation, seen here in regimesA andC. By contrast,
in the soft or semisoft regimeB we have 1/l and constant
contraction/dilation in thex and y directions, respectively
RegimeA has been studied by one of us@24#, in the special
case where only shears are allowed~i.e.,l5lxx51) and the
director returns toū50 on switching off a disaligning elec
tric field.

B. The equations of motion

The relaxation of this system, governed as it is by no
conserved variables, is most simply modeled in a continu
fashion with mobilitiesGa (a5u,lxx ,d) giving the rate of
response of each variable to the corresponding genera
force deriving from the FED:

du

dt
52Gu

] f

]u

52GuFAl2 sin 2u22dlxx~r 21!cos 2u

2S d22lxx
2 1

l2

r D ~r 21!sin 2uG , ~13!

dlxx

dt
52Gl

] f

]lxx

52GlF2lxx2
2

l2lxx
3 12lxx~r 21!sin2u

2d~r 21!sin 2uG , ~14!

dd

dt
52Gd

] f

]d

52Gd@2dr 22d~r 21!sin2u2lxx~r 21!sin 2u#,

~15!

where we have absorbed a factor of1
2 nskBT into the defini-

tions of Ga , and for simplicity have writtenGlxx
asGl . An

analogous problem has been addressed by us, namely w
extensions and contractions are suppressed (l5lxx5lyy
51) but shearsd and director rotation are allowed under a
electric field applied perpendicular to the initial direction
alignment@17,24#. Its statics and dynamics have been inve
tigated experimentally by Meyeret al. @14#.

The evolution Eqs.~13!–~15! describe the approach to th
equilibrium state, given by equations~10!–~12!, upon impo-
sition of an extensionl. We shall look in detail into regimes
B andC. There is no internal rotation of the elastomer und
an extensionl in regime A except for the transverse
volume-preserving relaxations to 1/Al. These must occur a
a rate governed by the speed of longitudinal sound. In
gimesB andC we shall consider the initial state of the sy
tem to be not onlyl (.l1) but alsolxx5lyy51/Al, the
latter two variables attaining this~nonequilibrium! state in a
time derived from propagating elastic waves across
sample, a time that is much shorter than the smallestGa

21 ,
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606 PRE 60P. I. C. TEIXEIRA AND M. WARNER
which derives from the subsequent internal relaxation. Eq
tions ~13!–~15! are coupled, so that the evolution of ea
variable is driven by the deviations of all variables fro
equilibrium. This can be understood in the context of o
earlier discussion of why a sheard is necessary to accom
modate shape change due to director rotation. Furthermo
opens up the possibility of complex behavior, depending
the ratios of the dynamical ratesGa .

In the next section we linearize the above equations
motion forl(t) andu(t), in order to extract their asymptoti
behavior at long times and thereby clarify the qualitat
aspects of the approach to equilibrium. It turns out thatlxx
becomes decoupled from the other two variables at lin
order in regimeC, leading to unexpected results. These
then confirmed by numerical solutions, presented in Sec.
We shall presume similar relaxation mechanisms for the
sitional modesd and lxx , and accordingly setGd5Gl in
what follows. Cases will be considered where the nem
degree of freedom,u(t), is comparably fast, faster, or slowe
than the positional degrees of freedom.

We shall see that the coupled, dissipative equations
motion generally yield exponential decays of the obse
ables. Yet it is known that the long-time response of b
isotropic @25# and nematic@26# elastomers is very slow in
deed. These are very subtle effects of chain connectiv
stress localization, and, in nematic elastomers, random fi
causing competing orderings. Polydomain elastomers h
additionally, pinning, activation, and competition and co
patibility issues. Work by Clarke and Terentjev@26#, both
experimental and theoretical, shows that their respons
imposed strains is highly nontrivial and with a very slo
dynamics. Our investigation is then clearly only applicable
times early compared with the very long time scales ass
ated with these other processes. Setting aside this long-
relaxation, there is nevertheless experimentally rich beha
observed in the earlier, principal decay of strains. We h
mentioned the dynamics induced by electric field coupling
the director@14#. There are also the dynamical mechanic
measurements of Clarke and Terentjev@20#, which reveal
relaxation in the fraction-of-second regime, a motion app
ently of the type we examine here.

III. THE APPROACH TO EQUILIBRIUM:
ASYMPTOTIC ANALYSIS

In the long-time limit, as deviations from the final equ
librium values become small, Eqs.~13!–~15! can be linear-
ized to give

d

dt S Du

Dlxx

Dd
D 52M•S Du

Dlxx

Dd
D , ~16!

whereDu5u2 ū, Dlxx5lxx2l̄xx , Dd5d2 d̄ are the de-
viations of the relaxing variables away from their final eq
librium values.M is given in terms ofū, l̄xx , d̄; it differs
qualitatively in form depending on whetherl is in regimeB
or C. Explicit expressions for the elements ofM are pre-
sented in the Appendix. One sees that forr 51 ~isotropic
a-
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elastomer!, the dynamics in the variableu disappears and
lxx and d decouple from each other, as expected in a c
ventional solid.

A. RegimeB

The rate matrixM is 333 and has three real eigenvalue
m1 ,m2 ,m3, with corresponding eigenvectorsv1 ,v2 ,v3, de-
caying as pure exponentials:vi(t)5vi(0)e2m i t ( i 51,2,3).
Du(t), Dlxx(t), andDd(t) can be expressed as linear com
binations of thevi(t) and hence will be the sum of expone
tial decays. At long times, whatever the admixture
v1 ,v2 ,v3 in a given variable is, the behavior will be dom
nated by the slowest mode, that is, the mode with the sm
estm i , ms , say. And indeed the variables in Figs. 2 and 3
relax with thesamerate constant in the long-time region
The smallest of the calculated eigenvalues ofM for the two
l ’s in regime B agrees exactly with the rate obtained b
fitting the numerical curves~see Tables I and II!. The preas-
ymptotic knee seen in Figs. 2 and 3 is a consequence of
presence of faster-decaying modes. In the Appendix we d
onstrate that the matrix of decay ratesM becomes singular a
the beginning and end of regimeB, that is, atl5l1 andl
5l2. At these particular elongations parts of the proble
become purely nonlinear and the dynamics power law ra
than exponential.

FIG. 2. Du ~solid line!, Dlxx ~dashed line!, and uDdu ~dotted
line! for a nematic elastomer characterized byr 51.4, A50.1, and
~a! Gu /Gl51.0; ~b! Gu /Gl510.0; and~c! Gu /Gl50.1. The exten-
sion isl51.2 ~regimeB!. At long times, all three variables deca
exponentially with the same time constant~see the text and Table
for details!.

FIG. 3. Same as Fig. 2 but forl51.3 ~regimeB!. See the text
and Table II for details.
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B. RegimeC

When the final state is of total reorientation,ū5p/2, and
zero shear,d̄50, the linearization of the equations of motio
is more subtle since several elements ofM vanish; see the
Appendix. The equation forDlxx decouples from those fo
Du and Dd, which remain coupled to each other. One c
immediately see why at long timesDu andDd must have the
same decay rate—it will be the smaller of the two eigenv
ues emerging when the 232 problem of (Du,Dd) ~de-
scribed by matrixM red, see the appendix! is broken down
into normal modes.

The equation forDlxx , being decoupled, has a dynami
of its own and is, superficially,

dDlxx

dt
528GlrDlxx . ~17!

However, there is noa priori reason for discarding the
higher-order terms in (Du)2, DuDd, and (Dd)2 in Eq. ~17!,
which are, at linear order, independent ofDlxx . Although of
second order, they may or may not be smaller than the o
driving term,Dlxx . Retaining them, one obtains instead

dDlxx

dt
528GlrDlxx12Gl~r 21!F 1

r 1/4Al
~Du!22DuDdG

528GlrDlxx1g~ t !, ~18!

whereg(t) is a known function, asDu(t),Dd(t) are deter-
mined separately as solutions of the decoupled 232 prob-
lem. At long times both must decay exponentially with t
lowest eigenvaluems of M red, determining the rate as dis
cussed above. Thusg(t);B exp(22mst) and Eq.~18! is a
simple nonhomogeneous ordinary differential equation w
solution

Dlxx~ t !5B ce
28Glrt1B

e22mst

8Glr 22ms
, ~19!

TABLE I. Elastomer relaxation to regimeB, l51.2, for r
51.4, A50.1, Gl5Gd51.0. ms is the smallest eigenvalue ofM
given by Eqs.~A1!–~A9! of the Appendix. The decay rates a
found by fitting the curve forDu(t) in Fig. 2 to an exponential. The
numbers in parentheses are the estimated uncertainties in th
decimal places; note the excellent agreement between analy
predictions and numerical results.

Gu ms Decay rate

1.0 0.092 8004 0.092 64~1!

10.0 0.695 105 0.691 2~6!

0.1 0.009 524 23 0.009 5131~5!

TABLE II. Same as Table I, but forl51.3, using Fig. 3.

Gu ms Decay rate

1.0 0.128 968 0.129 06~1!

10.0 1.018 54 1.019 4~1!

0.1 0.013 1045 0.013 1085~3!
l-

er

h

whereBc is an arbitrary constant. Now it is clear from E
~A11! of the Appendix thatms!4Glr , for most choices of
Gu and Gd . This means thatDlxx(t) is dominated by the
nonhomogeneous term, that is, by the effect ofDu(t) and
Dd(t). It follows that the rate of decay ofDlxx(t) is twice
that of Du(t) or Dd(t):

Dlxx~ t !;e22mst;„Du~ t !…2;„Dd~ t !…2. ~20!

Because the dynamics is singular atl5l1 andl5l2, there
are always regions ofl where some eigenvalues becom
very small and the time scales in Eq.~19! are well separated
hence where Eq.~20! is valid.

The remarkable qualitative change between regimesB
andC is borne out by the numerical results of Sec. IV. On
more, the faster-decaying mode manifests itself as the k
in Fig. 4.

IV. NUMERICAL SOLUTIONS

We adopt a typical value of the anisotropyr 51.4 @23#
and a moderate semisoftnessA50.1 @17#. For these choices
the threshold for deformations isl1'1.154, and that for
completion of the~semi!soft regime isl2'1.366. In this
section, time is given in units ofGl5Gd . NAG library rou-
tine D02BDF was used to perform the numerical integrati
~Runge-Kutta-Merson method!.

A. Relaxation to regimeB

In Fig. 2 we show the relaxation in response to an i
posed deformationl51.2. Since the system starts in a me
stable state@settingu5d50 in Eqs.~13!–~15! will confirm
that there is initially no motion#, a small misalignment of
u (102621024 is enough! is required to start off. To this
extent the origin in time is arbitrary and we do not displ
the initial decay.

Irrespective of the relative dynamical rates,Gu :Gl:Gd ,
the early time behavior is identical, withDu andDd starting

last
cal

FIG. 4. Du ~solid line!, Dlxx ~dashed line!, and uDdu ~dotted
line! for a nematic elastomer characterized byr 51.4, A50.1, and
~a! Gu /Gl51.0; ~b! Gu /Gl510.0; and~c! Gu /Gl50.1. The exten-
sion is l51.5 ~regimeC!. d starts from zero and only when it i
appreciable are the other variables seen to react, as there must
enough shear to accommodateDu, see Fig. 1. At long times, all
three variables decay exponentially but the rate constant ofDlxx is
twice those of the other two, which are equal~see the text and Table
III for details!.
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608 PRE 60P. I. C. TEIXEIRA AND M. WARNER
first and more gradually thanDlxx . At longer times the de-
cays are very accurately single exponential~see Table I!,
with exactly the same time scale for all three variables,
follows from the analysis of the preceding section. The sa
observations can be made of Fig. 3, wherel51.3 ~see also
Table II!. A little more structure is nonetheless evident
d(t), even though the system is overdamped: the shear
not approach its equilibrium value monotonically, and th
Dd changes sign at some intermediate time.~The cusp in
Fig. 3 is a consequence of plottinguDdu.! This results from
the fact that the components of the combination of dist
tions coupled to, and hence driving,d(t), themselves decay
at different rates. Moreover, it is apparent particularly in t
Gu510 case that there is a knee in going from the init
regime to the late-time region with its common slope.

B. Relaxation to regimeC

A strain of l51.5 is now imposed. The response of t
various modes is outwardly rather complex~see Fig. 4!: Dd
starts at zero, since in regimeC both the initial and final
shear vanish. The shear seems to take off more rapidly
Du or Dlxx but this is illusory as it starts from zero an
small changes are simply more visible. There is again a k
in Du andDlxx . The final decay is purely exponential wit
the rate ofDlxx exactly twice those ofDu and Dd, which
are equal~see Table III!. These remarks hold for all ratio
Gu :Gl :Gd . Thus as revealed analytically in Sec. III, there
both complexity and universality in the response.

V. CONCLUSIONS

We have examined the response of a highly unusual e
tic material to step extensions. The coupling between m
chanical and internal~orientational! modes gives rise to dif-
ferent dynamics depending on whether the nematic elasto
is extended to be in the~semi!soft regime or in the hard
region beyond, in which director reorientation is comple
The most striking prediction is that in the latter regime t
rate of transverse mechanical relaxation should be twice
rate of director reorientation.

We should stress that our analysis is for the not-too-
stages of the behavior of nematic monodomains, so that
subtle long-time effects found even in isotropic elastom
do not prevail. However, the dynamics of reorientation
monodomains is a uniform process already observed
Meyer et al. @14#. This paper addresses the dynamical
pects of the related systems of Finkelmann@13# and Mitchell

TABLE III. Elastomer relaxation to regimeC, l51.5, for r
51.4, A50.1, Gl5Gd51.0. ms is the smallest eigenvalue ofM red

given by Eq.~A10! in the Appendix. The decay rates are found
fitting the curve forDu(t) in Fig. 4 to an exponential. The numbe
in parentheses are the estimated uncertainties in the last de
places. Once more, the agreement between analytical predic
and numerical results is remarkable.

Gu ms Decay rate

1.0 0.186 161 0.186 166~1!

10.0 0.812 649 0.812 666~4!

0.1 0.020 2819 0.020 301 5~7!
s
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@12#, the statics of which is successfully described by t
equilibrium theory@11,15,16#. Other more recent dynamica
mechanical work by Clarke and Terentjev@20# shows that
the apparent modulus varies significantly with frequency~in
the range 0.2–20 Hz! if the imposed shears couple to th
director, that is, where internal viscoelastic processes
come involved.
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APPENDIX

The matrix of driving terms in the linearized equations
motion ~16! is

M1152GuH 2S 12
1

r D @l21~ d̄22l̄xx
2 !r #cos 2ū

12~r 21!l̄xx sin 2ū1Al2 cos 2ūJ , ~A1!

M1252Gu@2~r 21!d̄ cos 2ū1l̄xx~r 21!sin 2ū #,
~A2!

M13522Gu@l̄xx~r 21!cos 2ū1 d̄~r 21!sin 2ū #,
~A3!

M2152Gl@2~r 21!d̄ cos 2ū1l̄xx~r 21!sin 2ū #,
~A4!

M2252GlF11
3

l2l̄xx
4

1~r 21!sin2 ūG , ~A5!

M2352Gl~r 21!sin 2ū, ~A6!

M31522Gd@l̄xx~r 21!cos 2ū1 d̄~r 21!sin 2ū #,
~A7!

M3252Gd~r 21!sin 2ū, ~A8!

M3352Gd@r 2~r 21!sin2 ū #. ~A9!

Although not symmetric unless allGa are equal, it must on
physical grounds be a diagonalizable matrix with real eig
values.

In regimeC, several elements ofM vanish, yielding

M red5S 2GuF S l2

r
2

1

lAr D ~r 21!2Al2G 2Gu~r 21!

r 1/4Ar

2Gd~r 21!

r 1/4Ar
2Gd

D ,

~A10!
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the eigenvalues of which are

m1,25~lr !21
†Gdlr 2Gu@~r 21!Ar 1l3~12r 1Ar !#

6„4GuGdlr @~r 21!r 3/21l3~12r 1Ar !#

1$Gdlr 2Gu@~r 21!Ar 1l3~12r 1Ar !#%2
…

1/2
‡.

~A11!
o

l.

s

n.
It is noteworthy thatM becomes singular forl5l1 and l
5l2, andM red for l5l2, i.e., at the boundaries between th
different regimes. That is, at these points at least one eig
value vanishes and we have an intrinsically nonlinear pr
lem, losing one of the exponentials to a power law. Then
the vicinity of l1 andl2 there is clearly a slowest mode an
the remarks made in Sec. III about all variables either dec
ing together or one twice as fast as the other two are see
apply.
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